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The properties of spiral-wave propagation in oscillatory and finite media are considered. Several
different types of trajectories of the spiral core are seen, as the distance from the boundaries is
increased. The size and the location of obstacles modify the motion of the spiral cores.
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I. INTRODUCTION

The behavior of spatial patterns in small systems is
an important issue as several experimental setups are of
rather small size. For example, Davidenko et al. study
the onset of spiral waves in vitro in a small piece of
heart tissue of size 20 x 20 mm? [1]. Another example is
given by the study of intracellular propagation of calcium
waves [2]. In small systems boundary effects may induce
patterns which are not present in infinite systems.

In this paper we report the properties of spiral waves
when they are created in a small oscillating system. By
a small system we mean a system which has a size of
the order of a few wavelengths. Our study is based on
numerical simulations of generic model equations, such
as the complex Ginzburg-Landau equation and also the
Brusselator model, both in a nonturbulent regime.

The spiral is created by introducing a topological de-
fect in the system. It is seen that zero-flux boundary con-
ditions may constrain the defect, situated at the center of
the spiral, to drift along the boundaries of the system. In
general, the defect follows simple trajectories in a trans-
lational motion. In some cases the translational motion
is accompanied with a rotational motion which gives rise
to a looping-type trajectory. We focus on the dependence
of these trajectories on the initial position of the defect,
on the geometrical shape of the system, and on the re-
laxational character of the oscillations. An interesting
point is that these trajectories may converge asymptot-
ically to several closed circuits, which are attracting for
nearby initial conditions. These circuits are followed by
the defects in a strictly periodic way and thus reflect the
existence of global-limit cycles of the dynamics.

Some phenomena, are also reported when impermeable
barriers (obstacles) are present in the system. These bar-
riers may annihilate or create new defects in the medium.

In Sec. II a description of the models is given, together
with some basic properties of spiral waves in oscillatory
media. In Sec. III we report our numerical results for a
system near the Hopf bifurcation. Trajectories in square
and circular geometries are compared. Section IV is de-
voted to the same numerical experiments, but with relax-
ation oscillations. In Sec. V, we report results concerning
propagation of spiral waves in the presence of obstacles.
Section VI has a general discussion and conclusions.
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II. SPIRAL WAVES IN OSCILLATORY MEDIA

This section is devoted to oscillatory media sub-
ject to dynamics which obey the complex Ginzburg-
Landau equation (CGL). This equation describes the
slow-amplitude modulation of the variables of a system
close to a supercritical Hopf bifurcation [3,4]. The CGL
equation possesses a large range of applications, from the
physics of lasers [5] to the study of cell aggregation in bi-
ology [6]. The CGL equation is given by

B W — (L +iBIWPW + (1 +i)VEW , ()
where V2 denotes the Laplacian operator in two-
dimensional space and W = U +:V is a complex variable.
The boundary conditions are of the zero-flux type, i.e.,
the field W satisfies n-VW = 0 on the boundaries, where
n is the normal vector to the boundary of the system.

As in Sec. IV, relaxational oscillatory behavior will
also be considered, using the well-known Brusselator
model (7, 8], for the sake of uniformity of the exposition,
we give the conditions under which the CGL equation is
a good description of the Brusselator model. The equa-
tions of the model are

X
%:zA-(B+1)X+X2Y+DfoX :

(2)
% — BX — X?Y + DyV2Y .

In the Brusselator model, the unique stationary state
(A, B/A) loses its stability via a Hopf bifurcation when
parameter B > By = 1 + A%, The distance from the

bifurcation point may be measured with the parameter €
defined as €e = /(B — By)/Bun.

When ¢ is not small, the dynamics exhibits relaxation
oscillations. On the contrary, when € tends to zero, the
concentration variables X and Y show sinusoidal oscilla-
tions, and the dynamics are very well approximated by
the CGL equation. The correspondence between parame-
ters of the Brusselator and those of the CGL equation has
been calculated by several authors [9]-[12] and is given
by
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ﬁ_4—7A2+4A4
T 3A(2+A?)
Dx — Dy
=-A=—". 3
@ Dx + Dy ()

Actually, the spatiotemporal variables (r, 7) of Egs. (2)
are related to the independent variables (x,t) of Eq. (1)
by scaling factors in which parameter B is present. In
this scaling procedure, the variables ¢, x, 7 and r are
expressed in units (time unit), (space unit), (s), and (cm),

©=(152) tw,

(cm) = e /% (s.u.). 4)

The advantage of studying the CGL equation, when-
ever it is applicable, is that its treatment is much simpler,
numerically as well as analytically. Especially, particu-
lar solutions of the CGL equation are known analyti-
cally. The simplest nonvanishing solution to Eq. (1) is
the homogeneous bulk oscillations defined by Wy(t) =
exp(—pft + 6p), where 6y is a constant. This solution
is linearly stable if the Benjamin-Feir condition is satis-
fied (1 + a8 > 0). This will be the case in the sequel.
Other analytical solutions are a family of plane waves
{Wy(z,t) = /1 —¢? exp(—ifwt £ ¢z]),0 < ¢ < L,w =
B + ¢*(a — B)}, which are stable with respect to small
perturbations, if the wave number ¢ fulfills the Eckhaus
condition [13]

1+ap
3t ab+250 ®)

Our work is concerned with another spatially inhomo-
geneous solution of the CGL equation, namely the iso-
lated spiral wave. This solution is described in polar
coordinates (r, ¢) by the following function:

Ws(r,¢,t) = F(r) exp{—ilwt + mo —9(r)]} . (6)

Hagan has shown [4] that in an infinite system this
type of function may be the solution to the CGL equa-
tion, with the boundary conditions: F(0) = (0) = 0,
lim, o0 ¥ = g5, limproo FF = /1 — @2, and with g5 as a
function of the parameters a and 3.

The condition F(0) = O states that the modulus |W;|
vanishes at the center of the spiral which corresponds to
the intersection of the curves Re W; = 0 and Im W, = 0,
where Re and Im denote, respectively, the real and the
imaginary parts. This point is called a topological defect
of the field W,. The topological charge of the defect is
defined as the circulation of the phase gradient of W,
around the defect

1
m = gfve-dx . (7

For instance, for a counterclockwise, one-armed spiral,
m = 1. Then, the conditions as r — oo show that W
is a spiral since, for large values of the coordinate r, the
isoconcentration lines obey to the equation gsr = ¢ + c,

*<g}=

with ¢ constant. This is the Archimedean spiral with
wavelength A\ = 2w/q,. However, when the system is of
a finite size we cannot take the limit 7 — oco. Neverthe-
less, by taking an initial condition which has topological
charge +1 or —1, and imposing zero-flux boundary con-
ditions, we obtain numerical solutions of Eq. (1). These
are analogous to isolated one-armed spiral waves if the
topological charge m = %1 is conserved.

The aim of the present paper is to report some ob-
servations on the motion of spiral waves in oscillatory
media. This motion may be studied by following the tra-
jectory of the topological defect localized at the center
of the spiral. We begin by studying the evolution of a
unique defect generated in a two-dimensional square sys-
tem of length L described by Eq. (1), and subject to the
following initial conditions:

U(z,y)= @,

(8)
Viz,y)=%.

We take the convention that the origin (0,0) of the
coordinate axis coincides with the center of the square.
The initial conditions (8) contain a topological defect of
charge m = 1 at position (d,0) [see Fig. 1(a)]. In the fol-
lowing the only parameter which will vary is the distance
d at which the defect is created.

Let us choose @ = —1. From Eq. (3) it is seen that
this choice corresponds to unequal diffusion coefficients.
‘We shall discuss later what happens when a = 0. When
a is fixed, and for a given 3, the evolution of the sys-
tem subject to the initial conditions (8) may lead to the
formation of a counterclockwise spiral wave, as depicted
in Fig. 1(b). The wave number gs(3) of this spiral as
shown from the numerical simulations may be evaluated
following the prediction of Hagan [4]. On the other hand,
we can evaluate the wave number gg(83) corresponding to
the Eckhaus condition Eq. (§). Comparing the two func-
tions ¢s(B) and gg(B) for different values of 8, we find
that there is a critical value 8, ~ 0.5 for which

Qs(,@c) = qE(ﬁc) and VB> fB.: qs(B8) > QE(ﬁ) .

Consequently, taking for example 8 = 0.6, the se-
lected wave number gs; does not satisfy the Eckhaus con-
dition (5) and the emitted wave trains are unstable. How-
ever, we do observe a stable spiral for 3 = 0.6. This
paradox was recently highlighted by Aranson et al. who
pointed out that the Eckhaus instability may be only
convective and not absolute [14]. Recall that convective
instability means that a perturbation, although ampli-
fied, moves away from its initial location and does not
necessarily grow locally. This is the case in our simu-
lations. For some initial conditions, a complex transient
dynamics is seen around the defect, as a result of the Eck-
haus instability. In some case spontaneous spirals may
even appear after the breaking of an emitted wave. But
after a while, these new defects are pulled toward the
boundary where they disappear. As we shall see below,
in most cases the only defect which subsists finally is the
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(a) (b)

original one, which was imposed by the initial conditions.
As time evolves, the defect usually does not remain mo-
tionless, but is pulled by the boundaries on a trajectory
circulating along the frontiers of the system.

In the following, we shall choose the parameter 8 =
0.6 > (., as it leads to behaviors which are more inter-
esting than in the case # < 8.. However, we shall discuss
in Sec. III what happens in the latter case.

The size of the square, L = 50 s.u., is taken such as it
corresponds approximately to four times the wavelength
of the spiral. With this condition, we may thus consider
that the system size is small, compared with the wave-
length of the emerging spiral.

In finite systems it is expected that the geometry of the
boundaries may influence the self-organizing properties
of the system. In Sec. III we show the evolution of the
defects, as described above, in two different geometries.

III. SINUSOIDAL OSCILLATIONS

In this section we report numerical experiments on
the motion of spiral waves as described previously, in
finite systems of square and circular geometries. Both
types of geometries are considered in order to investigate
which properties are generic for systems of limited size
and which effects are due to the particular shape of the
boundaries. The dynamics are described by the CGL
equation. Thus, we can think of our experiments as the
study of chemical spiral waves in an oscillating medium
near a Hopf bifurcation.

A. Square geometry

In our numerical experiments, Eq. (1) is solved by
means of a finite-difference method (cf. the Appendix),
with initial conditions given by expression (8). At each
time step, the new position of the defect is monitored by
computing the absolute minimum of |W| = 0, in a region
close to the preceeding position.

Our results are summarized in Fig. 2. As the distance d
of the initial position of the defect is varied continuously
from 0 to L/2, five different cases must be distinguished

FIG. 1. Counterclockwise spiral wave re-
sulting from the integration of Eq. (1) subject
to initial conditions (8) with d = 3L. (a) The
initial position of the defect in the square sys-
tem is situated at distance d from the center
of the square. (b) The real part of W is repre-
sented by gray shades. Parameters of Eq. (1)
are a« = —1, f = 0.6 and the system size is
L = 50.

for the evolution of the system.

(i)o<d< f—OL. The defect is attracted to a fixed
position situated at the center of the system.

(ii) L < d < L. The defect follows a trajectory
along a square of length L/4 [Fig. 2(a)]. The motion has
a mean velocity equal to 5.7 1072 s.u./t.u. This motion
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FIG. 2. Multiple asymptotic trajectories followed by the

defect in the square system for different values of d. (a), (b),
and (c) correspond, respectively, to cases (ii)—(iv). Parame-
ters of Eq. (1) are the same as in Fig. 1. The system is covered
by 80 x 80 boxes. The rectangle in the top-right corner is a
magnification of a loop.
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is very slow as compared with the phase velocity of the
emitted waves which is 0.57 s.u./t.u.

(iii) 4—75L < d < L. The defect is attracted to another
closed trajectory. The latter is of the form of a square
of length L/2 [Fig. 2(b)]. However, some distortions are
seen due to corner effects. This motion is a little faster
than in the preceeding case as the revolution of the defect
along this trajectory has a velocity of 8.7 1072 s.u./t.u.

(iv) 2L < d < L. In this case, although the defect
again follows the boundaries of the system, the trajec-
tory shows almost regular loops with some distortions at
the corners, as depicted on Fig. 2(c). This trajectory,
composed mainly of a translational and a rotational mo-
tion, is closed and attracting. The mean velocity of the
evolution is 0.49 s.u/t.u., which is much faster than the
above-cited cases. There is a modulation of the wave-
length of the emitted spiral.

(v) 8 <d < L. The defect is attracted by the

boundaries and vanishes there.
In all cases, the revolution of the defect around the fron-
tiers of the system is counterclockwise. We verified that
with an initial condition of opposite topological charge,
i.e., m = —1, the motion is clockwise.

It must be noted that all these closed trajectories are
due to boundary effects. Therefore they are not of the
same nature as the motion of the core of a spiral seen in
excitable media [15] or in oscillatory media [16]. In an in-
finite medium, this latter motion would persist, whereas
the motion we report here would not be present.

In our numerical simulations, the two-dimensional sys-
tem is divided in 80 x 80 boxes which may be identified
with a network of coupled oscillatory elements. The dis-
crete character of the system is reflected by the tiny oscil-
lations which are superimposed to the main trajectories
and which show a wavelength of L/80, i.e., the length of
a box. Figure 2 shows a magnified view of a part of a
loop. These results show that the dynamics of discretized
systems, as compared with the continum limit, is much
more complex.

The three closed trajectories (ii)—(iv) can be considered
as global-limit cycles of the system. Indeed, they repre-
sent time-periodic solutions of the equations, which are
stable with respect to small perturbations. The basins of
attraction of these limit cycles are probably separated by
four other trajectories between the different attractors,
which correspond to periodic repellors of the dynamics.
These repellors manifest themselves for values of d cor-
responding to the bounds of intervals given in (ii)-(iv).
Indeed, for these values the dynamics show long tran-
sients, which reveal the presence of the stable manifolds
associated with the repellors. In some cases these tran-
sients are accompanied by the creation of defects which
disappear later. These chaotic transient regimes may be
attributed to the convective instability of the emitted
waves, as mentioned in the Sec. II. In all cases the topo-
logical charge m = 1 is asymptotically conserved, except
in case (v) where m is decreased from 1 to 0 because of
the extinction of the spiral.

The looping motion reported in case (iv) is related to
the Eckhaus instability. Indeed, as mentioned in Sec. II,
the value of 3 has been chosen so that the selected wave

number g¢,(3) of the spiral does not satisfy the Eckhaus
condition (5). On the other hand, we have performed
other numerical simulations with 8 < 3., i.e., in the case
where there is no Eckhaus instability. In this situation,
no looping motion is observed.

Moreover, we observe also that if 3 is close to G, 0 <
B — B. < 1, oscillations of small amplitude appear in the
trajectory of the spiral core moving along the boundaries.
These oscillations are amplified for greater value of
and give rise to the looping motion described in (iv).
Therefore we conclude that the looping motion indicates
the presence of the Eckhaus instability which occurs for

B> Be.

B. Circular geometry

In Sec. III A we saw trajectories of the defect generat-
ing a simple spiral wave in a square geometry. We saw
the multiplicity of asymptotic states of the system as a
function of the initial conditions, and in particular the
existence of a looping trajectory near the boundaries of
the square.

Our aim in this section is to investigate whether these
properties are the results of square geometry and, more
specifically, corner effects, or are they intrinsic to the
system considered. In order to avoid corner effects, a
circular geometry will be considered.

First, we perform the same experiments as above in a
disk circumscribed to the square, i.e., of radius R = 3@ L.
Details on the numerical method are briefly given in the
Appendix.

A spiral wave is initiated with the initial conditions
given by Eq. (8) in which d plays the role of a control
parameter. When the distance d is increased from 0 to
its maximal value R, only three asymptotic states are
possible in the present case.

(i) 0 < d < 2R. The defect is attracted to a circular
trajectory. This situation is quite comparable to the case
(iii) of the square. In both cases, the trajectory lies at
the same constant distance from the border. The mean
speed of this motion (23 1073 s.u./t.u.) is faster than in
the square (8.7 1073 s.u./t.u.). Figure 3 shows such a
spiral in the disk.

(ii) 2R < d < 2 R. As in the case of the square geome-
try the trajectory with almost regular loops again follows
the boundaries. The mean velocity of this motion as well
as the mean distance of the defect from the boundaries
are the same as in the preceeding values measured in the
square. Moreover, the wavelength of the short loops is
also of the same order for the circle and the square sys-
tem.

(iii) 22R < d < R. The defect is attracted by the
boundary, the spiral disappears, and the system returns
to the bulk oscillations.

We should mention that in case (ii) the dynamics may
be a bit more complicated than the corresponding situ-
ation in the square. In fact, for some values of d, there
is an intermittent breaking of the wave train emitted by
the spiral, concomittant with the onset of another defect
at the same distance from the border as the center of the
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FIG. 3. A spiral wave in a disk of radius R = ﬁL/Z
The defect was initially situated at the center of the disk and
has moved to follow a counterclockwise circular trajectory of
radius ZR. Parameters of Eq. (1) are the same as in Fig. 1.

spiral. This new defect travels on a circular trajectory,
without loops.

We also performed the same simulation in a disk in-
scribed in the square, i.e., of radius R = L/2. Surpris-
ingly, in this circular domain, we lose the multiplicity of
asymptotic trajectories as a function of the parameter d
for the initial conditions (8). In fact, there is only one
stable trajectory which attracts the initial defect along
the boundary. Figure 4 shows the movement of a defect

FIG. 4. Looping motion of a defect situated initially at the
center of the disk of radius R = L /2. The initial conditions (8)
were initiated at d = 0. Small irregularities of the trajectory
are due to discretization effects.

situated initially at the center of the disk. After a few
rotations, the defect starts to get closer to the circular
frontier and follows a counterclockwise trajectory.

The results reported in this section were obtained close
to a Hopf-bifurcation point. It is interesting to see the
behavior of spiral waves in a medium undergoing relax-
ation oscillations.

IV. RELAXATION OSCILLATIONS

The experiments presented in Sec. III describes the
dynamics of spiral waves arising in the Brusselator model
with A = 1.631, Dx /Dy = 4.17, and B = (1 + €?) 3.66.
For € sufficiently small, thus close to the Hopf bifurcation,
we expect to find quantitative agreement between the
solutions of the CGL equation and the direct integration
of Egs. (2) in a system of length £. With the value of
Dy = 1075 cm?/s, and due to the scaling factors (4), the
size of the Brusselator system correponding to Sec. III is
L =3.810"3/e cm.

As € is increased, the CGL description is no more valid
because the oscillations lose their sinusoidal shape and
exhibit relaxation oscillations, characterized by a short
episode of rapid variation followed by a longer time in-
terval of slow variation. This feature is reflected by the
onset of sharp fronts of concentration and trigger waves.
The system is expected to behave more like an excitable
medium.

With relaxation oscillations, it becomes more difficult
to initiate an isolated spiral wave. For example, the ini-
tial conditions given by Eqs. (8) do not lead anymore to
a sustained spiral. In order to favor the birth of a spi-
ral wave, special initial distribution of the concentration
variables must be mapped in the space around the de-
fect. Following the idea of Erneux and Kaufman we use
the initial conditions which creates a spiral wave around
the position (0, d) [9],

(Komr) = (i) = (5 ) tiamrn
(9)

In this expression, r1 = pcos(c), r2 — d = psin(o),
x(e) = Xo(cT/2r), and &(o0) = Yo(oT/2m), where
(Xo(t),Yo(2)) is the homogeneous limit cycle solution of
the Brusselator of period 7. A is the supremum of dis-
tances from the (0,d) position to another point in the
system, c is an arbitrary constant, and k; is the first zero
of the derivative of the Bessel function J;.

Now, we consider the Brusselator model with the same
parameters as above, but with the value of € = 1 in order
to get relaxation oscillations. Both square and circular
geometries will be examined.

We first consider a square system of length £ =
3.8 x 1073 cm. An isolated spiral wave is created by
the initial conditions (9). Here again the system can set-
tle on several asymptotic states, depending on the initial
position of the defect. For d = 0, as in the case of small
€, the spiral rotates steadily at the center of the square
with a period of T = 3.67 s (Fig. 5). Note that here the
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FIG. 5. Isolated spiral wave appearing in the evolution
of the Brusselator equations (2) subject to the initial con-
ditions (9) at d = 0. The concentration variable X is rep-
resented by gray shades. The zero-flux boundary condi-
tions force the isoconcentration lines to be perpendicular to
the boundaries. Parameters A = 1.631 and B = 7.32 are
such that the dynamics present relaxation oscillations. The
other parameters of Egs. (2) are Dx = 4.17 x 107 %cm?/s,
Dy = 10"scm2/s, and the system size is £ = 3.8 x 10~2 cm.

wavelength of the spiral is roughly £/2. As d is increased,
similar asymptotic states are observed. For d = £/8, the
spiral seems to rotate around a fixed position. This sit-
uation was observed for more than 1000 rotations of the
spiral. For d = 2/8 L, the defect of the spiral is attracted
to a square trajectory of length 3/8 £ on which the spiral
drifts very slowly with a velocity of 0.29 x 1076 cm/s.
Finally, for d = 3/8 L, the spiral is attracted to another
square trajectory of length 2/3 £. The latter is no more
of the looping type, but reduces to a simple translation
along the boundaries. The velocity of the slow drift of the
spiral is 1.2 x 105 cm/s. Thus the relaxation oscillations
simplifies the motion of the spiral.

Later on, the size of the square was increased to 2 L.
Here also the closest trajectory to the boundaries, which
lies at the same distance from it than in the square of
length £, is only a translational motion.

Next we perform the numerical experiment with the
Brusselator in a disk inscribed to the square, i.e., of di-
ameter £. As in the sinusoidal case, there is no multi-
stability of trajectories, and in particular the central po-
sition of the circle is an unstable position for the defect.
There is only one stable trajectory along the circular
boundaries, but contrary to the sinusoidal oscillations,
there is only a translational motion and no looping mo-
tion is seen.

In conclusion, we see that relaxation oscillations give
rise to similar behaviors as for the CGL equation in small
systems. Looping motions are not present with relax-
ation dynamics. However, with relaxation oscillations we
can expect intrinsic motions of the spiral core, such as the
meandering in excitable media. This fact was effectively
observed by Wu, Chee, and Kapral [16].

V. DEFECT IN THE PRESENCE OF OBSTACLES

Let us consider again a two-dimensional oscillatory
medium, so that the CGL description remains valid.
However, presently an impermeable barrier divides the
square in two compartments. The two compartments
communicate through an opening of length { [17].

We start our numerical simulations in the same manner
as above. The value of d is fixed to L/8.

When the size of the opening ! is decreased from its
maximal value | = L, several behaviors are observed.
Figure 6(a) shows a typical trajectory of the defect when
the opening is sufficiently large (I = L/2). The defect
visits the two compartments, following a complex closed
curve. We observe that during the passage through the
aperture, the motion is much slower than in the other
parts of the system.

When the opening size is reduced, the defect does not
travel in the entire system. It is constrained to a closed
path in one compartment, as illustrated in Fig. 6(b)
(! = L/5). In the second compartment no defects are ob-
served, but irregular target waves like activity are emit-
ted from the opening (not shown).

In addition to these typical behaviors, for particular
values of [, other phenomena may appear. For example,
for [ = 3/4 L, the initial defect starts in one compart-
ment, passes through the opening into the second com-
partment, and then is attracted to a small closed circuit a
short distance from the opening [see Fig. 6(c)]. Another
type of behavior is also obtained for | = L/10. In this
case, as the original defect describes a trajectory in the
first compartment, a second defect is created in the next
compartment. After a short period of coexistence, the
original defect disappears and the new one is stabilized
in a fixed position in the second compartment.

VI. DISCUSSION AND CONCLUSION

In this paper, with the help of numerical simulations,
we studied the motion of an isolated spiral wave in finite
oscillating media.

We showed that when the spiral center, the topological
defect, is created near the boundaries, it moves along the
boundary, independent of the geometry of the system.
This drift may be observed with sinusoidal as well as
relaxation oscillations. The speed of the spiral motion
substantially slows down when the trajectory takes place
far from the boundary.

The origin of this motion is probably due to the break-
ing of translational symmetry of the equations describing
the dynamics, resulting from the presence of boundaries.
In fact, the zero-flux boundary conditions create a mirror
image of the isolated spiral beyond the boundary. This
image plays the role of a virtual spiral which interacts
with the real one in a similar way as in a pair of spirals.
Therefore, the motions reported here could be compared,
in first approximation, to the motion of a pair of spirals,
which was studied recently analytically [16,18,19] as well
as numerically [16, 20, 21]. These studies show the rapid
decreasing of the interaction of a pair of spirals as the
distance between their cores is increased. The possibility
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of the drift of the pair in a direction perpendicular to
the line joining the centers of the spiral is also discussed.
Sakaguchi [20] points out that this motion, which is a
translation, is a nonvariational effect, and thus it would
not be present in the real Ginzburg-Landau equation.
Another generic feature of spiral waves in bounded os-
cillating media is that the asymptotic dynamics can take
the form of closed trajectories which are attracting and
are followed in a strictly periodic manner. Such asymp-
totic states constitute global-limit cycles of the system.
In a sufficiently large system, multiplicity of asymptotic
trajectories may be observed. This multistability is re-
duced in a circular geometry as compared with the square
geometry. In particular, in our experiments the center of
the square is a stable position for the center of the spiral,
whereas in the disk, it is an unstable position. When the
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system size is reduced, this central position may become
stable also in a disk [22]. When the system size is further
reduced, there is a critical value below which no stable
spiral wave is observed [9].

In the case of sinusoidal oscillations, we could observe
an interesting looping motion of the spiral core along the
boundaries, composed of a translational and a rotational
motion. During this motion the wavelength of the spiral
wave is modulated. This modulation may be attributed
to the Eckhaus instability, as discussed in Sec. III. In
the case of relaxation dynamics, no such looping motions
were observed. However, in this case the intrinsic motion
of the defect may be observed [16].

In this paper we discussed a system with unequal dif-
fusion coefficients. We have also performed numerical
experiments with equal diffusion coefficients, i.e., « = 0

FIG. 6. A square system is partitioned into two compartments by an impermeable barrier. An opening of size ! allows the
propagation of waves between both compartments. Evolution of the initial conditions (8), with d = %L, creates a spiral wave,
whose center circulates on a closed trajectory. (a) For | = L/2, the trajectory passes in both compartments periodically. (b)
For | = L/5, the trajectory is trapped in one compartment. (c) For [ = %L, the defect initially in the right compartment passes
through the opening and is attracted to a small closed trajectory in the left compartment. The parameters of Eq. (1) are the

same as in Fig. 1.
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in the CGL equation. We have chosen a value of § = 1.5
such that the same wavelength as considered in this paper
is selected, and we observed the same qualitative phe-
nomena. However, in this case no looping motion was
observed, although the selected wave number ¢, was in
the range of Eckhaus instability. Thus it seems that the
looping motion involves a # 0, which corresponds to un-
equal diffusion coefficients for reaction-diffusion systems.

The main results reported in this paper describe the
behavior of an oscillating reaction-diffusion system close
to a supercritical Hopf bifurcation. In this regime, the
dynamics may be described by the complex Ginzburg-
Landau equation, which is a normal form, i.e., a univer-
sal equation which is independent of the specific kinetics
of chemical reactions or any specific model. Therefore
our results are quite general, and are not limited to the
Brusselator model. Moreover, they apply to real sys-
tems like the BZ reaction, placed in appropriate condi-
tions or any real or model chemical oscillatory reaction
of the same type. Our numerical studies predict a variety
of phenomena which could be experimentally verified in
an oscillating chemical reaction-diffusion system of small
size.
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APPENDIX: NUMERICAL METHODS

Numerical integration of Eq. (1) and Egs. (2) is car-
ried out with finite-difference methods. The square ves-
sel is divided in a grid of N x N nodes on which the
Laplacian operator V2 as well as the zero-flux boundary
conditions are approximated by the well-known five-node
formula [23]. By this procedure, the partial-differential
equations are reduced to a large system of coupled or-
dinary differential equations which are solved with the
following methods.

Equation (1) is integrated with the Merson method
which is based on a four-order Runge-Kutta algorithm.
This method is endowed with a control of integration
step such as to achieve a given precision [24]. Most of
the computations are performed with N = 80 and a rel-
ative accuracy of 10~3. Numerical calculations were also
performed with N = 160 and an accuracy of 10~%. No
significant change on the quantitative behavior was ob-
served.

The simulations of Egs. (2) are performed with the
simple Euler method. Here we considered N = 160 and
a time step 6t ~ 1072 — 1073,

In the circular domain, Eq. (1) and Egs. (2) are inte-
grated, using a particular grid generation, suggested by
Zykov [25]. The grid generation is based on polar coor-
dinates with a variable angular distribution of nodes as
a function of the radius.

The idea of the method is the following. The disk of
radius R is divided in N concentric circles, equally spaced
by a distance of ér = —1%. On each circle of radius Kér,
(1 € K £ N), 6K nodes are equally distributed. In ad-
dition, a node is placed at the center of the disk. This
procedure covers the disk with 3R(R+1)+1 nodes, form-
ing a grid of almost constant density. The coefficients of
the discretized Laplacian operator are obtained by linear
interpolation of the neighboring nodes.

The grid generated by this procedure possesses a
hexagonal symmetry, i.e., only rotations which are a mul-
tiple of § leave the grid invariant. In some numerical
simulations, this symmetry is reflected in the solution of
Eq. (1) and Egs. (2). These spurious effects may be elim-
inated by imposing a random rotation of the grid during
the integration of the equations.

Note that a circular domain may also be discretized
inside a square grid. In this case, the finite-difference ap-
proximation of the Laplacian is simpler, but special care
must be taken in satisfying the boundary conditions. The
advantage of a polar grid is that the boundary conditions
are satisfied very simply. Moreover, the fact that we ob-
served the same phenomena with different discretization
methods shows that our observations are really related to
continuous media subject to reaction and diffusion pro-
cesses.
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